Writer Identification Based on Local Contour Distribution Feature

نویسندگان

  • Hong Ding
  • Huiqun Wu
  • Xiaofeng Zhang
  • JianPing Chen
چکیده

A method based on local contour distribution features is proposed for writer identification in this paper. In preprocessing, contours are abstracted form images by an improved Bernson algorithm. Then the Local Contour Distribution Feature (LCDF) is extracted from the fragments which are parts of the contour in sliding windows. In order to reduce the impact of stroke weight, the fragments which do not directly connect the center point are ignored in the feature abstraction procedure. The edge point distributions of the fragments are counted and normalized into LCDFs. At last, the weighted Manhattan distance is used as similarity measurement. The experiments on our database and ICDAR 2011 writer identification database show that the performance of the proposed method reach or exceed those of existing state-of-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-Line Text-Independent Arabic Writer Identification using Contour-Based Features

In this paper, we show how the combination and cooperation of six feature vectors computed from the minimum-perimeter polygon (MPP) contours of Arabic words can lead to very interesting results for off-line text-independent Arabic writer identification. These feature vectors are in the form of probability distribution functions (PDFs), and are based on the length, direction, angle and curvature...

متن کامل

Writer identification using curvature-free features

Feature engineering takes a very important role in writer identification which has been widely studied in the literature. Previous works have shown that the joint feature distribution of two properties can improve the performance. The joint feature distribution makes feature relationships explicit instead of roping that a trained classifier picks up a non-linear relation present in the data. In...

متن کامل

Anthropometric Analysis of Face using Local Gaussian Distribution Fitting Applicable for Facial Surgery

Human facial plays a very important role in the human’s appearance. Many defects in the face affect the facial appearance, significantly. Facial plastic surgeries can correct the defects on the face. Analysis of facial color images is very important due to its numerous applications in facial surgeries. Different types of facial surgeries, such as Rhinoplasty, Otoplasty, Belpharoplasty and chin ...

متن کامل

Oriented Local Binary Patterns for Writer Identification

In this paper we present an oriented texture feature set and apply it to the problem of offline writer identification. Our feature set is based on local binary patterns (LBP) which were broadly used for face recognition in the past. These features are inherently texture features. Thus, we approach the writer identification problem as an oriented texture recognition task and obtain remarkable re...

متن کامل

Statistical Pattern Recognition for Automatic Writer Identification and Verification

This chapter evaluates the performance of edge-based directional probability distributions as features in writer identification in comparison to a number of other texture-level features encoding non-angular information. We introduce here a new feature: the joint probability distribution of the angle combination of two ”hinged” edge fragments. It is noted that the ”edge-hinge” distribution outpe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014